Surprise Launch week – Day 3 - LangChain + LlamaIndex support is here!

Today we’re releasing two small Python packages that let you trigger Skyvern browser tasks directly from LangChain or LlamaIndex code.
- skyvern-langchain – LangChain Tool + Agent helpers
- skyvern-llamaindex – LlamaIndex Tool + Runnable helpers
Both follow the same pattern: create a task, wait for it if you like, or hand it off to Skyvern Cloud. Nothing else to set up.
Installation
pip install skyvern-langchain # LangChain
pip install skyvern-llamaindex # LlamaIndex
Minimal LangChain example
import asyncio
from skyvern_langchain.agent import RunTask # local, blocking
async def main():
result = await RunTask().ainvoke(
"Navigate to Hacker News and list the top 3 posts."
)
print(result)
asyncio.run(main())
Running against the cloud (returns immediately):
from skyvern_langchain.client import DispatchTask
task_id = await DispatchTask(api_key="sk-...").ainvoke(
"Navigate to Hacker News and list the top 3 posts."
)
If you need agent-style reasoning, initialise an agent with the supplied tools:
from langchain.agents import initialize_agent, AgentType
from skyvern_langchain.agent import DispatchTask, GetTask
agent = initialize_agent(
tools=[DispatchTask(), GetTask()],
llm=ChatOpenAI(model="gpt-4o"),
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
)
Minimal LlamaIndex example
skyvern_tool = SkyvernTool()
agent = OpenAIAgent.from_tools(
tools=[skyvern_tool.run_task()],
llm=OpenAI(model="gpt-4o"),
verbose=True,
)
response = agent.chat("Navigate to the Hacker News homepage and get the top 3 posts.")
The packages are early but functional; feedback or bug reports are very welcome.
- LangChain adapter repo → skyvern-langchain on GitHub
- LlamaIndex adapter repo → skyvern-llamaindex on GitHub
- Docs have a few more examples and edge-case notes.
Thanks for taking a look—let us know what you think.